天天拍久久-天天拍天天色-天天色国产-天天色天天碰-你懂的最新网址-你懂得2019在线观看网站

您好!歡迎光臨烜芯微科技品牌官網(wǎng)!

深圳市烜芯微科技有限公司

ShenZhen XuanXinWei Technoligy Co.,Ltd
二極管、三極管、MOS管、橋堆

全國服務熱線:18923864027

  • 熱門關鍵詞:
  • 橋堆
  • 場效應管
  • 三極管
  • 二極管
  • 關于開關電源內(nèi)部各種損耗的原因與知識詳細分析
    • 發(fā)布時間:2020-06-12 18:57:12
    • 來源:
    • 閱讀次數(shù):
    關于開關電源內(nèi)部各種損耗的原因與知識詳細分析
    開關電源各種內(nèi)部損耗詳解
    本文主要講關于開關電源內(nèi)部各種損耗的原因及知識詳細分析,電源工程師們都知道開關MOS在整個電源系統(tǒng)里面的損耗占比是不小的,開關mos的的損耗我們談及最多的就是開通損耗和關斷損耗,由于這兩個損耗不像導通損耗或驅(qū)動損耗一樣那么直觀,所有有部分人對于它計算還有些迷茫。我們知道這個損耗是由于開通或者關斷的那一個極短的時刻有電壓和電流的交叉而引起的交越損耗。
    要提高開關電源的效率,就必須分辨和粗略估算各種損耗。開關電源內(nèi)部的損耗大致可分為四個方面:開關損耗、導通損耗、附加損耗和電阻損耗。下面我們分別來討論一下,這些損耗通常會在有損元器件中同時出現(xiàn)。
    開關電源內(nèi)的主要寄生參數(shù)概述
    寄生參數(shù)是電路內(nèi)部實際元件無法預料的電氣特性,它們一般會儲存能量,并對自身元件起反作用而產(chǎn)生噪聲和損耗。對設計者來說,分辨、定量、減小或利用這些反作用是一個很大的挑戰(zhàn)。在交流情況下,寄生特性更加明顯。典型的開關電源內(nèi)部有兩個主要的、存在較大交流值的節(jié)點,第一是功率開關的集電極或漏極;第二是輸出整流器的陽極。必須重點關注這兩個特殊的節(jié)點。
    變換器內(nèi)的主要寄生參數(shù)
    在所有開關電源中,有一些常見的寄生參數(shù),在觀察變換器內(nèi)主要交流節(jié)點的波形時,可以明顯看到它們的影響。有些器件的數(shù)據(jù)資料中,甚至給出了這些參數(shù),如MOSFET的寄生電容。兩種常見變換器的主要寄生參數(shù)見圖3。
    有些寄生參數(shù)已明確定義,如MOSFET的電容,其他一些離散的寄生參數(shù)可以用集中參數(shù)表示,使建模變得更加容易。試圖確定那些沒有明確定義的寄生參數(shù)的值是非常困難的,通常用一個經(jīng)驗值確定,換句話說,在進行軟開關設計時,元器件的選擇以能得到最佳結果為原則來進行。在線路圖中,合適的地方放置寄生元件非常重要,因為電氣支路只在變換器工作的一部分時間內(nèi)起作用。例如,整流器的結電容只有在整流器反向偏置時會很大,而當二極管正向偏置時就消失了。表l列出了一些容易確定的寄生參數(shù)和產(chǎn)生這些參數(shù)的元器件,以及這些值的大致范圍。某些特殊的寄生參數(shù)值可以從特定元器件的數(shù)據(jù)資料中獲得。
    開關電源,開關電源內(nèi)部損耗
    開關電源,開關電源內(nèi)部損耗
    印制電路板(PCB)對寄生參數(shù)的影響無處不在,好的PCB布局規(guī)則可以盡量減少這些影響。
    流過尖峰電流的印制線對由任一印制線所產(chǎn)生的電感和電容很敏感,所以這些線必須短而粗。存在交流高電壓的PCB焊點,如功率開關的漏極或集電極或者整流管的陽極,極易與臨近印制線產(chǎn)生耦合電容,使交流噪聲耦合到鄰近的印制線中。通過“過孔”連接可以使交流信號印制線的上下層都流過同樣的信號。其余寄生參數(shù)的影響一般可歸到相鄰的寄生元件中。
    開關電源內(nèi)部損耗-與功率開關有關的損耗
    功率開關是典型的開關電源內(nèi)部最主要的兩個損耗源之一。損耗基本上可分為兩部分:導通損耗和開關損耗。導通損耗是當功率器件已被開通,且驅(qū)動和開關波形已經(jīng)穩(wěn)定以后,功率開關處于導通狀態(tài)時的損耗;開關損耗是出現(xiàn)在功率開關被驅(qū)動,進入一個新的工作狀態(tài),驅(qū)動和開關波形處于過渡過程時的損耗。這些階段和它們的波形見圖1。
    導通損耗可由開關兩端電壓和電流波形乘積測得。這些波形都近似線性,導通期間的功率損耗由式(1)給出。
    開關電源,開關電源內(nèi)部損耗
    控制這個損耗的典型方法是使功率開關導通期間的電壓降最小。要達到這個目的,設計者必須使開關工作在飽和狀態(tài)。這些條件由式(2a)和式(2b)給出,通過基極或柵極過電流驅(qū)動,確保由外部元器件而不是功率開關本身對集電極或漏極電流進行控制。
    開關電源,開關電源內(nèi)部損耗
    電源開關轉(zhuǎn)換期間的開關損耗就更復雜,既有本身的因素,也有相關元器件的影響。與損耗有關的波形只能通過電壓探頭接在漏源極(集射極)端的示波器觀察得到,交流電流探頭可測量漏極或集電極電流。測量每一開關瞬間的損耗時,必須使用帶屏蔽的短引線探頭,因為任何有長度的非屏蔽的導線都可能引入其他電源發(fā)出的噪聲,從而不能準確顯示真實的波形。一旦得到了好的波形,就可用簡單的三角形和矩形分段求和的方法,粗略算出這兩條曲線所包圍的面積。例如圖1的開通損耗可用式(3)計算。
    開關電源,開關電源內(nèi)部損耗
    這個結果只是功率開關開通期間的損耗值,再加上關斷和導通損耗可以得到開關期間的總損耗值。
    開關電源內(nèi)部損耗-與輸出整流器有關的損耗
    在典型的非同步整流器開關電源內(nèi)部的總損耗中,輸出整流器的損耗占據(jù)了全部損耗的40%-65%。所以理解這一節(jié)非常重要。從圖2中可看到與輸出整流器有關的波形。
    開關電源,開關電源內(nèi)部損耗
    整流器損耗也可以分成三個部分:開通損耗、導通損耗、關斷損耗。
    整流器的導通損耗就是在整流器導通并且電流電壓波形穩(wěn)定時的損耗。這個損耗的抑制是通過選擇流過一定電流時最低正向壓降的整流管而實現(xiàn)的。PN二極管具有更平坦的正向V-I特性,但電壓降卻比較高(0.7~1.1V);肖特基二極管轉(zhuǎn)折電壓較低(O.3~0.6V),但電壓一電流特性不太陡,這意味著隨著電流的增大,它的正向電壓的增加要比PN二極管更快。將波形中的過渡過程分段轉(zhuǎn)化成矩形和三角形面積,利用式(3)可以計算出這個損耗。
    分析輸出整流器的開關損耗則要復雜得多。整流器自身固有的特性在局部電路內(nèi)會引發(fā)很多問題。
    開通期間,過渡過程是由整流管的正向恢復特性決定的。正向恢復時間tfrr是二極管兩端加上正向電壓到開始流過正向電流時所用的時間。對于PN型快恢復二極管而言,這個時間是5~15ns。肖特基二極管由于自身固有的更高的結電容,因此有時會表現(xiàn)出更長的正向恢復時間特性。盡管這個損耗不是很大,但它能在電源內(nèi)部引起其他的問題。正向恢復期間,電感和變壓器沒有很大的負載阻抗,而功率開關或整流器仍處于關斷狀態(tài),這使得儲存的能量產(chǎn)生振蕩,直至整流器最終開始流過正向電流并鉗位功率信號。
    關斷瞬間,反向恢復特性起主要作用。當反向電壓加在二極管兩端時,PN二極管的反向恢復特性由結內(nèi)的載流子決定,這些遷移率受限的載流子需要從原來進入結內(nèi)的反方向出去,從而構成了流過二極管的反向電流。與此相關的損耗可能會很大,因為在結區(qū)電荷被耗盡前,反向電壓會迅速上升得很高,反向電流通過變壓器反射到一次側(cè)功率開關,增加了功率管的損耗。以圖1為例,可以看到開通期間的電流峰值。
    類似的反向恢復特性也會出現(xiàn)在高電壓肖特基整流器中,這一特性不是由載流子引起的,而是由于這類肖特基二極管具有較高的結電容所致。所謂高電壓肖特基二極管就是它的反向擊穿電壓大于60V。
    開關電源內(nèi)部損耗-與濾波電容有關的損耗
    輸入輸出濾波電容并不是開關電源的主要損耗源,盡管它們對電源的工作壽命影響很大。如果輸入電容選擇不正確的話,會使得電源工作時達不到它實際應有的高效率。
    每個電容器都有與電容相串聯(lián)的小電阻和電感。等效串聯(lián)電阻(ESR)和等效串聯(lián)電感(ESL)是由電容器的結構所導致的寄生元件,它們都會阻礙外部信號加在內(nèi)部電容上。因此電容器在直流工作時性能最好,但在電源的開關頻率下性能會差很多。
    輸入輸出電容是功率開關或輸出整流器產(chǎn)生的高頻電流的唯一來源(或儲存處),所以通過觀察這些電流波形可以合理地確定流過這些電容ESR的電流。這個電流不可避免地在電容內(nèi)產(chǎn)生熱量。設計濾波電容的主要任務就是確保電容內(nèi)部發(fā)熱足夠低,以保證產(chǎn)品的壽命。式(4)給出了電容的ESR所產(chǎn)生的功率損耗的計算式。
    開關電源,開關電源內(nèi)部損耗
    不但電容模型中的電阻部分會引起問題,而且如果并聯(lián)的電容器引出線不對稱,引線電感會使電容內(nèi)部發(fā)熱不均衡,從而縮短溫度最高的電容的壽命。
    開關電源內(nèi)部損耗-附加損耗
    附加損耗與所有運行功率電路所需的功能器件有關,這些器件包括與控制IC相關的電路以及反饋電路。相比于電源的其他損耗,這些損耗一般較小,但是可以作些分析看看是否有改進的可能。
    首先是啟動電路。啟動電路從輸入電壓獲得直流電流,使控制IC和驅(qū)動電路有足夠的能量啟動電源。如果這個啟動電路不能在電源啟動后切斷電流,那么電路會有高達3W的持續(xù)的損耗,損耗大小取決于輸入電壓。
    第二個主要方面是功率開關驅(qū)動電路。如果功率開關用雙極型功率晶體管,則基極驅(qū)動電流必須大于晶體管集電極e峰值電流除以增益(hFE)。功率晶體管的典型增益在5-15之間,這意味著如果是10A的峰值電流,就要求0.66~2A的基極電流。基射極之間有0.7V壓降,如果基極電流不是從非常接近0.7V的電壓取得,則會產(chǎn)生很大的損耗。
    功率MOSFET驅(qū)動效率比雙極型功率晶體管高。MOSFET柵極有兩個與漏源極相連的等效電容,即柵源電容Ciss和漏源電容Crss。MOSFET柵極驅(qū)動的損耗來自于開通MOSFET時輔助電壓對柵極電容的充電,關斷MOSFET時又對地放電。柵極驅(qū)動損耗計算由式(5)給出。
    開關電源,開關電源內(nèi)部損耗
    開關電源內(nèi)部損耗-與磁性元件有關的損耗
    對一般設計工程師而言,這部分非常復雜。因為磁性元件術語的特殊性,以下所述的損耗主要由磁心生產(chǎn)廠家以圖表的形式表示,這非常便于使用。這些損耗列于此處,使人們可以對損耗的性質(zhì)作出評價。
    與變壓器和電感有關的損耗主要有三種:磁滯損耗、渦流損耗和電阻損耗。在設計和構造變壓器和電感時可以控制這些損耗。
    磁滯損耗與繞組的匝數(shù)和驅(qū)動方式有關。它決定了每個工作周期在B-H曲線內(nèi)掃過的面積。掃過的面積就是磁場力所作的功,磁場力使磁心內(nèi)的磁疇重新排列,掃過的面積越大,磁滯損耗就越大。該損耗由式(6)給出。
    開關電源,開關電源內(nèi)部損耗
    如公式中所見,損耗是與工作頻率和最大工作磁通密度的二次方成正比。雖然這個損耗不如功率開關和整流器內(nèi)部的損耗大,但是處理不當也會成為一個問題。在100kHz時,Bmax應設定為材料飽和磁通密度Bsat 的50%。在500kHz時,Bmax應設定為材料飽和磁通密度Bsat 的25%。在1MHz時,Bmax應設定為材料飽和磁通密度Bsat 的10%。這是依據(jù)鐵磁材料在開關電源(3C8等)中所表現(xiàn)出來的特性決定的。
    渦流損耗比磁滯損耗小得多,但隨著工作頻率的提高而迅速增加,如式(7)所示。
    開關電源,開關電源內(nèi)部損耗
    渦流是在強磁場中磁心內(nèi)部大范圍內(nèi)感應的環(huán)流。一般設計者沒有太多辦法來減少這個損耗。
    電阻損耗是變壓器或電感內(nèi)部繞組的電阻產(chǎn)生的損耗。有兩種形式的電阻損耗:直流電阻損耗和集膚效應電阻損耗。直流電阻損耗由繞組導線的電阻與流過的電流有效值二次方的乘積所決定。集膚效應是由于在導線內(nèi)強交流電磁場作用下,導線中心的電流被“推向”導線表面而使導線的電阻實際增加所致,電流在更小的截面中流動使導線的有效直徑顯得小了。式(8)給出了這兩個損耗在一個表達式中的計算式。
    開關電源,開關電源內(nèi)部損耗
    漏感(用串聯(lián)于繞組的小電感表示)使一部分磁通不與磁心交鏈而漏到周圍的空氣和材料中。它的特性并不受與之相關的變壓器或電感的影響,因此繞組的反射阻抗并不影響漏感的性能。
    漏感會帶來一個問題,因為它沒有將功率傳遞到負載,而是在周圍的元件中產(chǎn)生振蕩能量。在變壓器和電感的結構設計中,要控制繞組的漏感大小。每一個的漏感值都會不同,但能控制到某個額定值。
    一些減少繞組漏感的通用經(jīng)驗法則是:加長繞組的長度、離磁心距離更近、繞組之間的緊耦合技術,以及相近的匝比(如接近l:1)。對通常用于DC-DC變換器的E-E型磁心,預計的漏感值是繞組電感的3%~5%。在離線式變換器中,一次繞組的漏感可能高達繞組電感的12%,如果變壓器要滿足嚴格的安全規(guī)程的話。用來絕緣繞組的膠帶會使繞組更短,并使繞組遠離磁心和其他繞組。
    在直流磁鐵的應用場合,沿磁心的磁路一般需要有一個氣隙。在鐵氧體磁心中,氣隙是在磁心的中部,磁通從磁心的一端流向另一端,盡管磁力線會從磁心的中心向外散開。氣隙的存在產(chǎn)生了一塊密集的磁通區(qū)域,這會引起臨近線圈或靠近氣隙的金屬部件內(nèi)的渦流流動。這個損耗一般不是很大,但很難確定。
    烜芯微專業(yè)制造二極管,三極管,MOS管,橋堆等20年,工廠直銷省20%,1500家電路電器生產(chǎn)企業(yè)選用,專業(yè)的工程師幫您穩(wěn)定好每一批產(chǎn)品,如果您有遇到什么需要幫助解決的,可以點擊右邊的工程師,或者點擊銷售經(jīng)理給您精準的報價以及產(chǎn)品介紹
    相關閱讀
    国产9在线 | 欧洲| 一边做饭一边暴躁怎么办 | 亚洲成AV人片无码迅雷下载| 国产精品无码无片在线观看| 孰妇XXXXXX的性生话| 动漫AV成人无码精品网站| 日本巨大的奶头在线观看| 爸爸缓慢有力送女儿的句子 | 国精产品一区二区三区四区糖心| 无码熟妇人妻AV在线影院| 国产精品高潮呻吟久久AV| 凸凹人妻人人澡人人添医| 国产边做饭边被躁在线小说 | 国产午夜福利内射青草| 性色A∨人人爽网站| 国产在线精品成人一区二区三区| 亚洲AV成人AV天堂| 黑人大荫蒂高潮视频| 亚洲春色AV无码专区在线播放| 国产又粗又猛又爽又黄的视频在线| 亚洲AV极品无码专区亚洲AV | 色妞WWW精品免费视频| 亚洲国产成人久久综合| 国产成人精品免高潮在线观看| 奇米精品视频一区二区三区| 中字年轻漂亮的儿媳BD| 精产国品一二三产品区别在哪里| 偷拍亚洲另类无码专区制服| 成人网站V片免费观看| 青青草无码精品伊人久久| 中文字幕亚洲乱码熟女1区2区| 国产熟睡乱子伦视频在线观看| 99久久国产综合精麻豆| 精品熟女少妇AV免费久久| 亚洲自偷图片自拍图片| 美国6一12呦女精品| 99无人区码一码二码三码...| 人妻少妇波多野结衣黑人| 顶级私人家庭影院| 无码人妻一区二区三区在线| 国产自偷在线拍精品热| 亚洲人成无码WWW久久久| 久久中文骚妇内射| AV最新高清无码专区| 日韓丨亞洲丨制服丨亂倫| 国产精产国品一二三产区区别 | 久久久久久精品免费免费麻辣| 又爽又刺激免费男女视频| 女人丝不挂的正面裸体| 成人区人妻精品一区二区不卡| 无码AV中文字幕免费放| 激情综合亚洲色婷婷五月APP| 一区二区中文字幕最近第九页| 女性C春合欢液高朝液精华液| 成人免费无码精品国产电影| 婷婷综合久久狠狠色成人网| 激情视频传媒一区二区| 中文字幕丰满乱孑伦无码专区| 人妻少妇 少妇人妻第一页| 国产AV人人夜夜澡人人爽麻豆| 亚洲AV无码国产精品永久一区| 久久天天躁狠狠躁夜夜| YYY6080韩国三级理论| 无码国产精品一区二区免费I6| 精品人妻无码中字系列 | 大荫蒂又大又长又硬又紧又粗| 五月天久久久噜噜噜久久| 久久久G0G0午夜无码精品| CHINESE猛攻打桩大学生| 天天想你视频免费观看西瓜| 精品人妻一区二区三区四区九九 | 少妇厨房愉情理伦片免费| 好男人无码内射AV| 18禁美女裸体爆乳无遮挡动图| 色既是空在线观看| 精二和精三的区别| AV无码久久久久不卡免费网站| 天天爽夜夜爽夜夜爽| 久久精品人妻一区二区三区| ているの天堂资源WWW| 无码专区无码专区视频网址| 久久夜色撩人精品国产AV| 成人午夜又粗又硬又长| 亚洲成A人片在线观看无码专区| 男男H黄漫画啪啪无遮挡| 国产Chinese男男GayGay网站| 亚洲乱色熟女一区二区三区麻豆| 欧美人与动牲交A免费| 国产乱色国产精品免费视频| 中文在线っと好きだっ最新版| 色欲色欲天天天WWW亚洲伊| 精品一区二区三区不卡少妇av| VIDEOS欧美熟妇高跟| 亚洲AV无码AV制服丝袜在线| 女人越喊男人越往里寨电视剧| 国产精品AV无码毛片久久| 一区适合晚上一个人看B站| 色欲AⅤ亚洲情无码AV| 久久精品AⅤ无码中文字字幕| 帮妺妺洗澡忍不住C了她作文| 亚洲AV无码乱码| 欧洲站高端8码特大码47| 国内少妇人妻丰满AV| AV无码AV高潮AV喷吹免费| 亚洲AV色香蕉一区二区三区夜夜嗨| 欧美丰满熟妇XXXX| 国内自产少妇自拍区免费| XXX.WWW免费观看视频| 亚洲成A人V在线蜜臀| 日本大片免费观看视频| 久99久热爱视频精品免费37| 成在人线AV无码免观看麻豆| 亚洲小说图区综合在线| 熟女精品视频一区二区三区| 乱人伦中文无码视频在线观看| 国产精品人成视频免费播放| 99国产亚洲精品美女久久久久| 校花高潮抽搐冒白浆| 欧洲S码亚洲M码精品一区| 精品国产精品国产偷麻豆| 成人无码无遮挡很H在线播放| 亚洲综合色成在线观看| 无码福利日韩神码福利片| 欧美成人精品欧美一级乱黄| 狠狠色噜噜狠狠狠狠7777| 处破女轻点疼丨8分钟| 尤物永久免费AV无码网站| 无码熟妇人妻AV影片在线| 欧洲熟妇色XXXXX老妇| 久久不见久久见免费影院国语| 丰满少妇被猛烈进入高清APP| 中文字幕AV无码不卡免费| 亚洲 精品 综合 精品 自拍 | 亚洲AV无码一区二区三区蜜桃 | 国产主播AV福利精品一区| 成 人影片免费观看| 尤物爆乳AV导航| 学生无码AV一区二区三区| 日本熟妇人妻XXXXX中文| 老妇饥渴XXHDⅩXXOOO| 国产一区二区在线视频| 从大树开始的进化漫画| 18禁丝瓜视频安卓版| 亚洲精品乱码久久久久久蜜桃不卡| 深夜成人毛片天堂| 欧美乱大交XXXXX疯狂俱乐部| 久久精品国产亚洲AV无码麻豆| 国产精品无码一区二区三级| らだ天堂中文在线| 在办公室把护士给爽了动态图 | 久久久久久精品无码人妻| 国产睡熟迷奷系列网站| 丰满大爆乳波霸奶| CHINESE熟女老女人HD视| 一对浑圆的胸乳被揉捏动态图| 亚洲AV无码成人精品国产| 四虎国产精品永久免费网址| 欧洲成人一区二区三区| 两根黑人粗大噗嗤噗嗤视频| 精品VPSWINDOWS妇女| 国产精品女人呻吟在线观看| 成年无码AV片在线| AAAA级少妇高潮大片在线观看| 一本到无码AV专区无码| 亚洲丰满熟妇乱XXXXX网站| 无码人妻丰满熟妇区毛片| 色噜噜狠狠色综合久色AⅤ网 | 香港经典A毛片免费观看变态| 色爱无码AV综合区老司机非洲| 欧美日韩无套内射另类| 美女直播全婐APP免费| 久久久久久久精品国产亚洲| 好爽好紧好大的免费视频国产| 国产精品99无码一区二蜜桃| 成人午夜免费无码福利片| WWW夜片内射视频日韩精品成人| 2022最新韩国理伦片在线观看| 一本大道东京热无码| 亚洲精品无码不卡在线播放| 亚洲AV日韩AV高潮潮喷无码| 无码人妻精品一区二区三18禁| 少妇BBWBBW高潮| 日本又黄又爽GIF动态图| 人妻内射.PORN| 欧美日韩亚洲中文字幕一区二区三 | 国产成人精品亚洲精品| 从今天开始当城主| 成年无码AV片完整版| YW尤物AV无码点击进入福利| 99国精品午夜福利视频不卡| 中文字幕无码乱码人妻系列蜜桃| 伊人性伊人情综合网| 一个上添B一个下添| 一本一道久久A久久精品综合| 亚洲午夜福利在线观看| 亚洲日韩乱码中文无码蜜桃 | 日本高清二区视频久二区| 人人妻人人爽日日人人| 人妻中出无码一区二区三区| 人人妻人人爽日日人人|